
 

y  y1  y2 

UNIT-1 

INTERFERENCE 
 

Interference: 
 

When two or more waves are superimposed then there is a modification of intensity or 

amplitude in the region of superposition. This modification of intensity or amplitude in the 

region of super position is called Interference. 

When the resultant amplitude is the sum of the amplitudes due to two waves, the 

interference is known as Constructive interference and when the resultant amplitude is equal to 

the difference of two amplitudes, the interference is known as destructive interference. 

 
 

PRINCIPLE OF SUPERPOSITION: 
 

This principle states that the resultant displacement of particle in a medium acted upon by 

two or more waves simultaneously is the algebraic sum of displacements of the same particle due 

to individual waves in the absence of the others. 

Consider two waves traveling simultaneously in a medium. At any point let y1 be the 

displacement due to one wave and y2 be the displacement of the other wave at the same instant. 
 

Then the resultant displacement due to the presence of both the waves is given by 
 
 

 

ve Sign has to be taken when both the displacements 

veSign’ has to be taken when both the displacements 

INTERFERENCE IN THIN FILMS 

y1 & 

y1 & 

y2 are in the same direction 

y2 are in the opposite direction. 

 

 
 

Consider a thin film of thickness t and refractive index  . A ray of light OA incident on the 

surface at an angle i is partly reflected along AB and partly refracted into medium along AC, 



 

The actual path difference  2t cos r  

2 

making an angle of refraction r .at C it is again partly reflected along CD. Similar refractions 

occur at E. 

To find the path difference between the rays, draw DB perpendicular to AB 

Then the path difference   ( AC  CD)  AB ...................... (1) 

From triangle ACE 

cos r  
CE

 
AC 

 

 
From triangle CDE 

AC 
CE 

 

 

cos r 
 

t 

cos r 
………………..(2) 

cos r  
CE

 
CD 

 

 
From triangle ABD 

CD 
CE 

 

 

cos r 
 

t 

cos r 
……………….(3) 

cos(90  i)  
AB

 
AD 

 
FROM triangle ACE 

AB  AD cos(90  i)  2 AE sin i ………..(4) ( ∵ AD  2AE ) 

 

 

 

 

From Eq (4) 

sin r  
AE 

⇒ AE  AC sin r 
AC 

AE  
t sin r 

cos r 

 

AB  
2t sin r 

sin i 
cos r 

AB  
2t sin r sin i 

 
sin r 

 

 
(   ∵ AC 




t 

) 
cos r 

cos r sin r 
2t sin 2 r 

 
sin i 

AB  ………………………(5) (∵ 
cos r 

) 
sin r 

On substituting the values of AC, CD & AB from Eq(2),(3)&(5) in Eq(1) ,we get 

The path difference  ( 
t 

 
t 2t sin2 r 

) 
cos r cos r 
2t 

cos r 
2t cos2 r 


cos r 

(1 sin2 r)   2t cos r 
cos r 

The path difference  2t cos r 

According to the theory of reversibility, when the light ray reflected at rarer-denser interface, it 

introduces an extra phase difference  (or) path difference of 



2 



 

2  t c o s r  ( 2 n  1 ) 
  

 
2 

2t cos r  (n 1)

Case.1: condition for maximum intensity 

We know that the intensity is maximum when path difference= n

 From Eq.(6) 2t cos r  
 
 n

2 

Case.2: condition for minimum intensity 

We know that the intensity is minimum when path difference  (2n 1) 



2 

 from Eq.(6) 2t cos r  
 
 (2n 1) 




2 2 
 

NEWTON’S RING EXPERIMENT 
 

A Plano convex lens(L) having large focal length is placed with its convex surface on the 

glass plate(G2).a gradually increasing air film will be formed between the plane glass plate and 

convex surface of Plano convex lens. The thickness of the air film will be zero at the point of 

contact and symmetrically increases as we go radially from the point of contact. 

A monochromatic light of wavelength ‘λ’ is allowed to fall normally on the lens with the 

help of glass plate (G1) kept at 450 to the incident monochromatic beam. A part of the incident 

light rays are reflected up at the convex surface of the lens and the remaining light is transmitted 

through the air film. Again a part of this transmitted light is reflected at on the top surface of the 

glass plate (G1).both the reflected rays combine to produce an interference pattern in the form of 

alternate bright and dark concentric circular rings, known as Newton rings. The rings are circular 

because the air film has circular symmetry. These rings can be seen through the travelling 

microscope. 

 

 
 



 

THEORY 
 

Consider a Plano convex lens is placed on a glass plate. Let R be the radius of curvature and r 
be the radius of NEWTON ring, corresponding to constant film thickness. 

As one of the rays suffers reflection at denser medium, so a further phase changes of  or path 


difference of 
2 

takes place. 

 


The path difference between the rays =2µt cos r + 

 
For air   1 , and normal incidence r  0 

----------------------------- (i) 
2 

 

 Path difference  2t + 


2 

 

AT THE POINT OF CONTACT 
 

The thickness of the air film t=0, µ=1 & for normal incidence r = 0. 


Then the path difference = . 

2 


If the Then the path difference = 

2 
then the corresponding phase difference is π.so that 

gives a dark spot is formed at the centre. 

For bright ring 

2t  
 
 n

2 

      
2t  (2n 1) (ii) 

2 
 

For Dark ring  
2t  

 
 (2n 1) 




2 2 
 

2t  n (iii) 



 

r 

n 

n 

m 

D  D 

D 2  4Rnn 

In the above fig, from the property of the circle 
 

NP  NQ  NO  ND 
 

r  r  2t  (2R  t) 
 

r 2  2Rt  t 2 
 

As t is small, t 2 is very small. So t 2 is neglected. 
 

 

 

 

 

 
Thus for bright ring 

From Eq (ii) & (iv) 

 r 2  2Rt 
 

2 

t  ⇒ 
2R 

 

 
D2 

t  ---------------------------- (iv) 
8R 

 

2D 2 
 (2n 1) 

8R 2 
 

 

 

 
Thus for dark ring 

From Eq. (iii) & (iv) 
 

2D 2 

8R 

 

 

 

 

 

 

 

 
 n




  (v) 

 

D2  4Rn ............................................. (vi) 

 

 
Determination of wave length of monochromatic light 

 

From Eq(vi) D 2  4Rn


For n  m , D 2  4Rm


 D 2  D 2  4Rm  4Rn = 4R (m  n) 
m n 

 

2 2 

   m n ---------------------------------------------------------------- (vii) 
4R(m  n) 

 

This is the expression for wave length of monochromatic light. 

D 2  2(2n 1)R 
n 



 

m n 

m n 

Determination of refractive index of a liquid 

The experimental set up as shown in fig. is used to find the refractive index of a liquid. 

To find the refractive index of a liquid, the plane glass plate and Plano convex lens set up is 

placed in a small metal container. The diameter of nth and mth dark rings are determined, when 

there is air between Plano convex lens and plane glass plate. 

Then we have, 
 

D 2  D 2  4Rm  4Rn
m n 

= 4R(m  n) . 
 

Now the given liquid whose refractive index (µ) is to be introduced in to the space 

between Plano convex lens and plane glass plate without disturbing the experimental set 

up. 

Then the diameters of Newton’s rings are changed. Now the diameter of nth and mth dark 

rings are measured. 

Then D 2 – D 2 = 4Rλ (m-n)/µ -------------------------- (viii) 

Therefore from (vii) & (viii)µ= D 2 – D 2 

 

CONDITIONS TO GET STATIONARY INTERFERENCE FRINGES 

1. The two sources should be coherent. 

2. The two sources must emit continuous waves of the same wavelength and same frequency. 

3. The distance between the two sources (d) should be small. 

4. The distance between the sources and the screen (D) should be large. 

5. To view interference fringes, the back ground should be dark. 

6. The amplitude of interfering waves should be equal. 

7. The sources must be narrow, i.e., they must be extremely small. 

8. The source must be monochromatic source. 

Production of Colors in thin films: 

With monochromatic light alternate dark and bright interference fringes are obtained. 

With white light, the fringes obtained are colored. it is because the path difference 2t cos r  


2 

depends upon  , t & r 

(i) Even if t and r kept constant, the path difference will change with  &  of light 

used. White light composed of various colors from violet to red. The path difference 

also changes due to reflection at denser medium by 
 

as  〈 . 

2 
V R 

(ii) If the thickness of the film varies with uniformly, if at beginning it is thin, which will 

appear black. as path difference varies with thickness of the film, it appears different 

colors with white light. 

(iii)  If the angle of incidence changes, the angle of refraction is also changes, so that with 

white light, the film appears various colors when viewed from different directions. 



 

DIFFRACTION 
 

 

 

“When light is incident on the obstacles or small apertures whose size is comparable to 

wavelength of light, then there is a departure from straight line propagation, the light bends round 

the corners of the obstacles and enters into geometrical shadow. This bending of light is called 

diffraction.” 

 

 

 

 
 

Differences between Interference and diffraction 
 

INTERFERENCE DIFFRACTION 

 
1. Superposition is due to two separate wave 

fronts originating from two coherent sources. 

 

1. Superposition is due to secondary wavelets 

originating from different parts of same wave 

front. 

2. Interference fringes may or may not be of same 

width. 
2. Diffraction fringes are not of the same width 

3. Points of minimum intensity are perfectly dark 
3. Points of minimum intensity are not perfectly 

dark. 

4. All bright bands are of uniform intensity 4. All bright bands are not of same intensity. 

 
There are two types of Diffractions are there, they are 

1. Fresnel Diffraction 

2. Fraunhofer Diffraction 



 

Fresnel diffraction Fraunhofer diffraction 
 

Differences between Fresnel Diffraction and Fraunhofer Diffraction 
 

Fresnel Diffraction Fraunhofer Diffraction 

 

1. Eighter a point source or an illuminated 
narrow slit is used. 

 
1. Extended source at infinite distance is used. 

 

2. The wave front undergoing diffraction is 

either spherical or cylindrical. 

 

2. The wave front undergoing diffraction is 

plane wave front. 

3. The source and screen are at finite distances 
from the obstacle. 

3. The source and screen are at infinite 
distances from the obstacle. 

4. No lens is used to focus the rays. 4. Converging lens is used to focus the rays. 

 

FRAUNHOFER DIFFRACTION AT SINGLE SLIT: 
 

 

Consider a slit AB of width “e” and a plane wave front WW1 of monochromatic light of 

wavelength “λ” is incident normally on the slit. The diffracted light through the slit is focused with the 

help of a convex lens on a screen. The screen is placed at the focal plane of the lens. Here the secondary 

wave lets spared out to the right in all directions. 

The waves travelling along OPo are brought out to focus at Po by the lens. Hens PO is the 

bright central image. 

The secondary wavelets at angle “θ” with normal are focused at P1 on the screen. 

Depending upon path difference, P1onmay be of maximum (or) minimum intensity point. 

To find intensity at P1 we drawn a normal AC from A to the light ray at B the path 

difference between the wave lets from A and B in the direction “θ” is given by 
BC 

From TraingleABC, sin   ⇒ BC  AB sin   e sin 
AB 



 

  

Phase difference = 
2 

e sin 


Let us consider the width of the slit is divided into ‘n’ equal parts. Then the phase difference 

between any two consecutive waves from these parts would be. 
1 1  2  

(total. phase) n 

= 
n 

 
 .e sin   d (say) 

  

a sin 
nd

 

∵ Resultant amplitude R  2   

sin 
nd

 
2 

a sin 
 n 
 

2 
.e sin   

2 n  

 R 
  

 

sin 
 2 

.e sin   
2n  

  

a sin 
 e sin  
   

   

sin 
 e sin  
 

n  
  
e sin 

Let  . Then 


R  
a sin 

sin 



n 

As 
 

is small, sin 

n 

 
 


n n 

 R  
a sin  

 na 
sin 

 


n 

Now the intensity 

 
 

 
 

Principal Maximum: 

sin  A   3  5  7  
R  A 


 
 

   
3! 

  
5! 

  
7! 

 ....  

  2  4  6  
 A 1  

3! 
  

5! 
  

7! 
  ...  

  

The value of R will be maximum, when =0, i.e 

Or  = 0 

 

e sin 





 0 or sin  0 

 Maximum intensity I=R2 =A2, this is occurred at  = 0, this maximum is known as 

principal maximum. 

I  R 2  A2  
 sin  

2
 

 
 .......(1) 

 



 

Minimum intensity Positions: 

The intensity will be minimum, when sin =0. 

   , 2 , 3 , ..........  m

  m

e sin


 m






In this way, we obtain the points of min. inf. on either side of the principle maxima. 

 
Secondary maxima: 

 

In addition to principle maxima at =0. There are weak secondary maxima between 

equally spaced minima.  The points of secondary maxima obtained as follows. 
2 

I  A
2  sin   

    
  

dI 
 A2 .2 

sin  
.
 cos  sin  

 0
 

d   2 

From above either sin =0, or  cos -sin  =0 if sin =0, it is min. intensity position. Hence 

positions of maximum are obtained by 

 cos  sin   0 

 cos  sin 


---------------- (2) 

 

The values of  satisfying the above equation are obtained graphically by plotting curves y   , 

y  tan  on the same graph.   The points of intersection of two curves give the values of  which 

satisfy the equation (2) 

 

 
From fig The points of intersections are   0, 3 , 5 ,......... , at these points we get secondary 

2 2 

maxima 

e sin   m

  tan 



 

Intensity distribution graph 
 

FRAUN HOFFER DIFFRACTION AT DOUBLE SLIT: 
 

Let A B and CD be two parallel slits of equal width ‘ e ’ separated by an opaque distance d . The 

distance between the corresponding middle points of the two slits is (e  d ) . Let a parallel beam of 

monochromatic beam of wave length  be incident normally upon to the two slits.  . 

When a wave front is incident normally on both slits all the points with in the slits 

become the sources of secondary wavelets. The secondary waves traveling in the direction of 

incident light come to focus at Po while the secondary waves traveling in the direction making an 

angle with  the incident light come to focus at P1. 
 

According to the theory of diffraction at a single slit. The amplitude R due to all the 

wavelets diffracted from each slit in a dissection  is given by. 
 

R  A 
sin 





where   
e sin 



Thus for simplicity we can take two slits as equivalent to two sources S1 and S2 placed at 
Asin 

mid points of the slits and each slit sending a wavelet of amplitude 


in the direction . 

 Resultant amplitude at a point P1 on the screen will be a result of interference between 
Asin 

two waves of amplitude and having a phase difference. 


The path difference between the wavelets from S1 and S2 in the dissection  = S2k. 

path.difference  (e  d ) sin

 phase.difference( )  
2 

(e  d ) sin 




 

2 


A sin 

From figure R cos  
Asin  cos  .............. (1) 

 
R sin  

Squaring & adding eq(1)&(2) 

 
A sin 

sin  .............................. (2) 


2 2 2 2 

I  R
2 
 

 A sin    
 

 A sin   
cos   2 

 A sin   
cos   

 A sin   sin 
            
        

2 

 
 A sin   2  2 cos  
   
  

 2 
 A sin   

 
1 cos  

   
  

 2 
 A sin   2 cos2 




   
2
 

  
 Asin    

I  4   cos2  ........(3) , Where    (e  d ) sin 
   2 





Discussion of Intensity: 

 

From equation (3) the resultant intensity depending upon the following two factors. 

sin2 
1. A2 Which is same as the intensity in the case of single slit diffraction thus it gives 

 2 

intensity distribution in the diffraction pattern. 

2. cos2  Which gives the intensity pattern due to two waves interfere. 

The resultant intensity at any point on the screen is given by the product of these two 

factors. 
 

 Diffraction term 

 
sin 2 

 2 

 

 
gives the 

(i) Central maximum at   0 

(ii) Minimum intensity positions   m

e sin


 m

e sin  m
. 

(iii) .Secondary maxima obtained at 

 
  3 

 
, 5 

 
,............... 

2 2 

On taking these three points plotted as graph as shown in the fig(a). 

2 

2 



 

The interference term cos2  gives the maximum 

cos2   1 ⇒   m

 
(e  d ) sin  m



(e  d ) sin  m

This is plot as shown in fig.(b) 

The resultant intensity graph is as shown in fig. (c) 

 

Diffraction at N-Parallel slits [Diffraction grating] 
 

An arrangement consists of large no. of parallel slits of same width and separated by equal 

opaque spaces is known as diffraction grating. 

If there are N slits. 

The path difference between any two consecutive slits is  (e  d ) sin

 Phase difference = 
2 

(e  d ) sin   2




 

By the method of vector addition of amplitudes 

a sin 
nd 

R  2   

sin 
d
 

2 
A sin 

In this case a  , n  N 




 R 
 A sin  

. 
sin N

and d  2

 sin 

 Asin  2 sin   sin N 
2

 

I  R2      
   

2 

  sin    

 Asin   The factor  
 

 gives the distribution of intensity due to single slit. While the factor 
  

 sin N 
2

  
sin   gives the distribution of intensity as a combined effect of all the slits. 

  
Principle maxima: 

The intensity will be maximum when sin   0 

  n , n  0,1, 2, 3,..... 
 

 sin N   
But at the same time Sin N  = 0. So that the factor  sin   becomes indeterminate. 

 lim 
sin N



 lim 

 

 N cos N
  

  N 
 n sin 

 sin N 
2

 

 n
cos 

lim    N 2 
 n  sin   

2 

 The Resultant intensity I  
  A sin   

N 2 
   

 
i.e. The principle maxima obtained for 

  

  n

 (e  d ) sin


 n


Minimum Intensity Positions: 

Intensity I is the minimum when sin N  0 ,but sin   0 

 N   , 2 , 3 ,......... 

N (e  d ) sin 


 m




Where m having all values except 

N (e  d ) sin  m

(e  d ) sin  n



 

(N 2  cot2  ) 

0, N , 2N , ............ nN. 

i.e, m  1, 2,.....(N 1),(N 1),....(2N 1),(2N 1),....... 

Secondary maximum: 

I maximum when 

dI 
 0

 

d

  d 
[( A 

sin  
)

2 
(
sin N 

)
2 
]  0

 

d  sin 

(
 A sin  

)
2 
2[

sin N 
][ 

N sin  cos N  sin N cos  
]  0

 

  sin2 

N sin  cos N  sin N cos   0 

N sin  cos N  sin N cos 

N sin   cos  ( 
sin N 

) 

cos N

tan N 
N 

 

 

cot 







sin N  
N

 

 

sin2 N

sin2 

N 2 


(N 2  cot2  ) sin2 

N 2 

 

 

 
 

sin2 N


N 2 sin2   cos2 

N 2 

 
N 2 sin2  1 sin2 

N 2 

 
sin2 




1 (N 2 1) sin2 



Isec 

 

 ( A 
sin





)2[ 
N 2 

(N 2 1) sin2  1 



 

 
int ensity.of .sec.ondary max ima 

int ensity.of . principle max ima 

N 2 


(1 (N 2 1) sin2  )  N 2 

 
int ensity.of .sec.ondary max ima 




int ensity.of . principle max ima 

1 
 

 

1 (N 2 1) sin2 
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From this we conclude that as the value of N increases the intensity of secondary maxima will decreases 

 

GRATING SPECTRA 
 

We know that the principle maxima in a grating are formed in a direction  is given by 

(e  d ) sin  n

Where (e  d ) grating element is  is the angle diffraction and λ is Wave length 

From the above equation, we conclude that 

1. For a particular wave length λ, the angle of diffraction  is different for different orders. 

2. For white light and for an order n the light of different wave lengths will be diffracted in 

different directions. The longer the wavelength, greater is the angle of diffraction. So violet color 

being in the innermost position and red color in the outermost position. 
3. Most of the intensity goes to zero order and rest is distributed among other orders thus the spectra 

become fainter as we go to higher orders. 

Characteristics of grating spectra 

1. Spectrum of different orders are situated symmetrically on both sides of zero order 

2. Spectral lines are almost straight and quite sharp. 

3. Spectral colors are in the order from violet to red. 
4. Most of the intensity goes to zero order and rest is distributed among the other orders. 



 

Maximum no. orders available with a grating 
The principle maxima in grating satisfying the condition 
 

(e  d ) sin  n

n  
(e  d ) sin


(e  d ) sin 900 

nmax 


n m ax 

 
 



 
( e  d ) 




DISPERSIVE POWER OF GRATING: 
 

The dispersive power of grating is defined as the rate of variation of angle of diffraction with 

wavelength i.e., 
d 

is known as dispersive power of grating. 

d

The condition for maxima is (e +d) sin θ = n 

On differentiation we get (e+d) cosθ dθ = n d














re ct  
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This is the expression for dispersive power of grating. 

Conclusions : 

 

➢ The dispersive power is directly proportional to diffraction order n. 

➢ The dispersive power is inversely proportional to grating element (e+d). 

➢ The dispersive power is inversely proportional to cosθ. 
 

RESOLVING POWER OF GRATING: 
 

The resolving power of a grating is defined as the capacity to form separate diffraction maxima of two 

wave lengths which are very close to each other 
 

Let A B be a   plane grating having grating element (e  d ) and N be the total no. of slits. let a 

beam of wavelengths  and   d is normally incident on the grating in the fig P1 is the nth primary 

maximum of wavelength  at an angle of diffractionn and P2 is the nth primary maximum of 

wavelength   d at an angle of diffraction (n  dn ) . 

 

 

 

 

T he  li nk e d i ma g e ca n n ot  be  dis pla y ed .  Th e fil e  ma y h av e  b e en  

mo v ed,  r en a me d, o r d el et e d.  Ve ri fy  th a t t he  li n k p oi nts  to  th e  c or  

fil e a n d  lo ca ti o n.  



 

According to Rayleigh’s criterion, the two wave lengths will be resolved if the principle 

maximum of one  falls on the first minimum of the other. 

The principle maximum of  in the direction n is given by 

(e  d ) sin n  n ......... (1) 

The wave length (  d) form its nth    primary maxima in the direction (n  dn ) 

(e  d ) sin(n  dn )  n(  d ) ............. (2) 

 

The first minimum of wave length  from in the direction (n  dn ) 

N (e  d ) sin(n  dn )  (nN 1) ............ (3) 

Multiplying eq(2) with N 
 

N (e  d ) sin(n  dn )  nN (  d) .......... (4) 
 

From (3) & (4)  

Nn(  d)  (nN 1) 

nN  nNd  nN   

nNd  

     
 nN 

d


But from eq (1) n  
(e  d ) sin n 



Re solving. power.of .grating 

 

PREVIOUS QUESTIONS 

 

1. What is meant by diffraction of light? Explain on the basis of Huygens wave theory. 

2. Explain with necessary theory, the Fraunhofer diffraction due to ‘n’ slits. 

(Or) 

Give the theory of plane diffraction grating. Obtain the condition for the formation of nth order 

maximum. 

3. Distinguish between Interference and Diffraction. 

(Or) 

How is diffraction different from Interference? 

4. Calculate the maximum number of orders possible for plane diffraction grating. 

5. Write notes on Rayleigh’s criterion. 

6. Distinguish between Fresnel and Fraunhoffer diffractions. 

7. Define Resolving power of grating. Derive the expression for Resolving power of a grating based 

on Rayleigh’s criterion. 

8. Describe the action of plane transmission grating in producing diffraction spectrum. 

9. Show that grating with 500lines/cm cannot give a spectrum in 4th order for the light of wave 

length 5890 A0. 

 

d

 
 N (e  d ) sin n  
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